runRankprod {EMA}R Documentation

Rank product for small samples size

Description

Rank product method to identify differentially expressed genes. This method is useful for small samples size.

Usage

runRankprod(data, labels, q = 0.05, plot = TRUE)

Arguments

data

A matrix, a data frame, or an ExpressionSet object. Each row of 'data' (or 'exprs(data)', respectively) must correspond to a gene, and each column to a sample.

labels

A vector of integers corresponding to observation (column) class labels. For 2 classes, the labels must be 0 and 1.

q

A numeric value specifying the pvalue threshold.

plot

A logical value specifying if drawing plots or not.

Value

A list of two dataframes, the identification of up-regulated and down-regulated genes in class 2 compared to class 1, respectively. RP/Rsum : The rank product. AdjpValue : The adjusted pvalues. RawpValue : The raw pvalues. FC(class1/class2) : The fold change calculation.

Author(s)

EMA group

References

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.(2004) Rank Products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments, FEBS Letter, 57383-92

See Also

RPadvance

Examples

## load data
data(marty)

## Not run: 
## filtering data
marty <- expFilter(marty, threshold=3.5, graph=FALSE)

## End(Not run)

##Class label 0/1
marty.type.num <- ifelse(marty.type.cl=="Her2+",0,1)

## run differential analysis on example set
example.subset <- marty[1:100,]
out <- runRankprod(example.subset, labels=marty.type.num, q=0.05, plot=FALSE)



[Package EMA version 1.3.2 Index]